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Translational and nontranslational motion of perturbed Turing patterns

Vladimir K. Vanag and Irving R. Epstein
Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham,

Massachusetts 02454-9110, USA
~Received 26 December 2002; published 27 June 2003!

When the front and rear boundaries of a Turing pattern with nonzero flux boundary conditions move
synchronously, several modes of motion of the pattern are found. Traveling boundaries can be obtained
experimentally by illuminating a Turing-unstable system through a moving mask consisting of a single dark
stripe with a light intensity sufficient to suppress pattern formation. All structured moving patterns belong to
two general types: smooth translation at low mask velocityvx and nontranslational~‘‘hopping’’ ! at interme-
diatevx . At high vx , Turing patterns are unable to form, and an unstructured striped image of the mask is seen.
When the mask width exceeds the Turing wavelength, bistability between different types of moving patterns
can occur asvx is varied.

DOI: 10.1103/PhysRevE.67.066219 PACS number~s!: 82.40.Ck, 47.54.1r
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I. INTRODUCTION

Turing patterns and motion would seem, at first glance
be incompatible phenomena. However, under some co
tions, moving Turing patterns are possible. We recen
found @1# in the Belousov-Zhabotinsky~BZ! reaction dis-
persed in an aerosol OT water-in-oil microemulsion~BZ-
AOT system! the existence of dash waves, which consist
parallel lines of propagating spots or dashes. We sho
experimentally and in model simulations that when the m
croemulsion has a bimodal distribution of water nanodrop
with two different droplet radii~2.1 and 20 nm!, the BZ-
AOT system has two steady states, one of which exhi
excitability and the other possesses a pseudo-Turing inst
ity. The excitable state generates trigger waves that
switch the system in the area occupied by waves to
pseudo-Turing unstable steady state, which can result in
trigger wave splitting into fragments or dashes separated
gaps. Each dash wave may be thought of as a o
dimensional propagating Turing structure with characteri
wavelength (gap1dash) 2p/k0 , wherek0 is the wave num-
ber corresponding to the pseudo-Turing instability.

Moving spots~the analog of dash waves! have also been
obtained recently in a very different experiment involvin
external perturbation of Turing patterns in the chlori
dioxide–iodine–malonic acid~CDIMA ! reaction@2#. Striped
Turing patterns were illuminated through a striped mask
ented parallel to the pattern with the same spatial periodi
of dark and transparent zones. Light passing through
transparent regions of the mask suppresses pattern form
@3#, so that Turing structures can survive only in the da
zones. When the mask is slowly moved perpendicular to
stripes, the Turing patterns move with the mask. At a criti
mask velocity, the Turing stripes split into a linear array
spots moving coherently in the same direction. Further
crease ofvx leads to a ripple structure. This symmetr
breaking phenomenon is not yet understood.

These two experiments have much in common and
spired us to investigate the relationship between Tur
structures and traveling boundaries~mask motion!. The latter
is equivalent, in a sense, to the propagation of a pair
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trigger waves. As the mask starts to move, say, toward
right, the left edges of a striped Turing pattern are brou
under illumination and are suppressed, while new shad
zones become available for expansion of Turing pattern
the right. The right border of each Turing stripe represen
kind of trigger wave front, since the system there is switch
abruptly from one state~the suppressed state under illumin
tion! to another~the excited dark state!. The left border of
each Turing stripe corresponds to a trigger wave front w
the opposite switching.

Illumination of Turing patterns through a moving mas
has a close relation with three types of experiments that h
recently been performed:~1! illumination of Turing patterns
through stationary masks of different wavelengths@4#; ~2!
spatially uniform, time-periodic illumination of Turing pat
terns@3,5#; and~3! formation of Turing structures in the pres
ence of a moving region of illumination@6#.

In this paper we study the dependence of Turing patte
on the velocity of a one-stripe moving mask in a broad ran
of mask velocities, mask widths, and light intensities. In S
II we outline our model and explain our choice of paramet
for the Turing patterns under investigation. In Sec. III w
present the results of our numerical simulations for a tw
dimensional system. In Sec. IV we analyze the transit
from translational to nontranslational motion for the on
dimensional case. Section V contains our discussion and
clusions.

II. A MODEL: PRELIMINARY RESULTS FOR A
STATIONARY MASK

To simulate Turing patterns, we employ the well-know
Lengyel-Epstein model@Eqs. ~1! and ~2!# for the CDIMA
reaction@7# augmented by an additional termw that charac-
terizes the light intensity@3,4#

]u/]t5a2u24uv/~11u2!2w~x,t !1Du, ~1!

]v/]t5sb@u2uv~11u2!1w~x,t !#1sdDv. ~2!

The variablesu and v are the dimensionless concentratio
of @ I2# and @ClO2

2#, respectively;a,b,d ~the ratio of the
©2003 The American Physical Society19-1
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diffusion coefficients ofu and v), ands are dimensionless
parameters that involve the reaction rates and input con
trations of the major chemical species. The rate of the p
tochemical reactionw(x,t) is a function of the spatial coor
dinatex and timet and is expressed as

w~x,t !5w11w2m,

wherem51 if x,xm or x.xm1 l m , and 0, if xm,x,xm
1 l m ; xm5x02vxl , wherevx is the velocity of the moving
mask in thex direction, andx0 is the initial x coordinate of
the left edge of the mask stripe of widthl m .

Equations~1! and ~2! were solved numerically with the
FLEXPDE package@8# with periodic boundary conditions fo
the left and right borders of a rectangular area 30330 in size
~in some cases, with very wide stripes, we employ a
330 area; for one-dimensional simulations we used a s
ment as long as 150!. Zero flux boundary conditions wer
used at the top and bottom of the area.FLEXPDE refines the
triangular finite element mesh until the estimated error in a
variable is less than a specified tolerance, which we chos
1024, at every cell of the mesh.

We choose the parametersw1 andw2 so that the system
~1!, ~2! has a stable homogeneous steady state atw5w1
1w2 ~both eigenvalues are negative at all wave numbersk!,
while at w5w1 , the system possesses one positive real
genvalue in the range 0,kmin<k<kmax. The system~1!, ~2!
then has a Turing instability atw5w1 . For a well-chosen se
of parametersa, b, s, and d, we can obtain all types o
Turing patterns@Fig. 1~a!# by varyingw1 @9#.

As Fig. 1~a! shows, white spots appear at low values ofw,
stripes at intermediatew, and black spots at higherw. When
w.5.786, only the uniform steady state is stable. Therefo
we usew11w256 to suppress Turing patterns@since the
steady state of model~1!, ~2! is uSS5a/52w, we must have
w,a/5; for the parameters used here,a/557.2]. Bistability
between stripes and black spots is found whenw is between
about 3.5 and 5. The type of pattern that occurs in the d
zone of the mask, wherew5w1 , depends upon bothw1 and
the widthl m of the mask. Figures 1~b! and 1~c! show that the
bistability region vanishes whenl m,lT @lT is the Turing
wavelength obtained by linear stability analysis of the s
tem ~1!, ~2!, lT>4.2– 4.5 atw54 – 4.5], and reappears fo
l m>lT .

Comparison of Figs. 1~b! and 1~c! at w150 with the Tur-
ing patterns in Fig. 1~a! at w50 reveals that the white spo
Turing pattern disappears ifl m is too small. This phenom
enon has a straightforward interpretation. The regions c
ered by the mask in Figs. 1~b! and 1~c! have special bound
ary conditions at their left and right boundaries~flux to and
from the illuminated homogeneous steady state!, while the
patterns in Fig. 1~a! have zero flux or periodic boundar
conditions. The special boundary conditions in Figs. 1~b! and
1~c! correspond to a ‘‘white background,’’ wherew5w1
1w2 . White spot Turing patterns atw50 have a ‘‘black
background,’’ and are incompatible with a ‘‘white bac
ground.’’ Since the width of the dark area is less than
Turing wavelength (lT>5.6 at w50), there is not enough
06621
n-
o-

0
g-

y
as

i-

e,

rk

-

v-

a

room to fit both the ‘‘proper’’ background and a set of whi
spots, so instead the system generates a black stripe aw1
50.

In Fig. 2 we examine how the type of Turing patte
varies withl m at severalw1 . Forw150 and 4~as well as for
w154.5, not shown!, there are regions ofl m where the pat-
tern found depends on the initial conditions. Since we o
tained bistability atw54 and 4.5 on varyingw without a
mask@Fig. 1~a!#, it is not surprising to find bistability with
respect tol m for these values ofw1 . We also anticipate the
lack of bistability with respect tol m found atw152 and 5.2,
since these levels of illumination do not yield bistabili
whenw is varied. The unexpected bistability atw150 @col-
umns ~a! and ~b! in Fig. 2# appears to be associated wi
stabilization of the stripe pattern, which emerges faster t
the spot pattern, by the white background of the illumina
region. Thus, if we start with homogeneous initial conditio
or the stripe pattern, the latter can persist (l m58,11.2), or at
least linger in the form of linked spots (l m512.6), though if
we start from the natural white spot pattern, it remains sta
so long asl m>lT .

FIG. 1. Turing patterns in model~1!, ~2! illuminated through a
mask of width l m5(a) 30, ~b! 2, ~c! 4.6 for a536, b52.8, d
51.2, ands530. Size530330. Arrows show directions of chang
ing w1 ~numbers below snapshots!. In ~a! and ~c!, upper ~lower!
arrow shows direction of changingw1 for upper ~lower! row of
patterns.~a! l m5305size andw5w1 . For w152 in the upper row
of each set of patterns, an initially homogeneous steady state
perturbed on a narrow stripe at the left boundary. The rest of
upper row was generated by starting from the Turing pattern fo
at one value ofw1 and then increasingw1 to the next value shown
The lower row of patterns was generated by starting from the
tern atw155 and decreasingw1 in the reverse of the process de
scribed above. If the initial pattern is that obtained atw150, the
pattern found atw152 is the one in the lower row.~b!, ~c! Intensity
of light w inside mask stripe isw1 ; w5w21w156 outside this
stripe.
9-2
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Understanding how the Turing patterns change withl m
will be important later in interpreting the behavior of movin
Turing patterns as a function of mask velocityvx . Our pre-
liminary calculations atvx50 allow us to find representativ
values of w1 and l m , which we use in our study of the
moving mask. We choosew155.2 for black-spot Turing pat-
terns,w154 and 4.5 for bistability,w152 for striped Turing
patterns, andw150 for white-spot patterns. We will also
consider the effect of varyingl m ( l m,lT , l m>lT , and l m
>2lT).

Our analysis of the behavior of a moving mask requi
knowledge of the rate of Turing pattern expansion into
region wherew5w1 . To obtain these data, we performe
computer experiments analogous to those made by K
et al. @6# or Jensenet al. @10#, but in two dimensions. A
rectangular area 50320 in size is divided into two regions
The right part (10320) is illuminated withw56, and the
left part (40320) with w5w1 . Turing patterns start to ap
pear at the boundary between the parts and spread to the
For w152, 4, and 4.5, stripes emerge one by one@Fig. 3~a!#;
for w150, columns of white spots emerge and propagate
tandem with intervening black stripes. Forw155.2, stripes
appear first and then are transformed into black spots. In
case@Fig. 3~b!# we calculate two rates of pattern propag
tion, one for stripes and another for spots. These rate
frontal propagationVintr are summarized in Table I.

Note that in the reverse process, in which Turing patte
initially occupy the entire area withw5w1 and then the light
intensity is instantaneously increased tow56 in most of the
area, while the smaller part remains atw5w1 , no propagat-
ing front of pattern disappearance is found. Instead, all T

FIG. 2. Stationary Turing patterns illuminated through a mask
width l m ~numbers below snapshots!. Inside mask stripe, intensity
of light w150 for columns~a! and~b!, 2 for ~c!, 4 for ~d! and~e!,
and 5.2 for~f!; w5w11w256 outside this stripe. All other param
eters as in Fig. 1. Patterns in columns~b! and~e! are obtained from
homogeneous steady state as the initial pattern. Patterns with l
l m were used as initial conditions for patterns in columns~a! and
~d!. No bistability regions are found forw152 @column ~c!# and
w155.2 @column ~f!#.
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ing peaks disappear simultaneously after a characteristic
between 0.2 and 0.8 depending on the initial type of patte

III. MOVING MASK

We carried out simulations of moving masks at a varie
of mask velocities and lengths. Representative results of
simulations are presented in Tables II~values of w1 for
which only one type of Turing pattern is found! and III ~val-
ues ofw1 in a bistable region of Turing patterns! and in Fig.
4. We find three general types of pattern movement:~i!
smooth translational movement at small velocities, wh
Turing patterns follow the moving mask while maintainin
their structure;~ii ! nontranslational movement at modera
velocities, where patterns periodically change their structu
and ~iii ! translational movement of a single unstructur
stripe at high velocities. In this last, and least interesti
case, the moving stripe may be viewed as the shadow of
moving mask. These stripes are seen in the bottom row
Tables II and III below the single bold separation line. T
critical velocitiesvcr un at l m52lT , for which this uniform
stripe emerges, are given as a function ofw1 in the right
column of Table I. The striking agreement betweenvcr un and
Vintr suggests that the appearance of these unstruct
stripes is related to the rate of pattern formation in a unifo
medium. If vx.Vintr , then Turing patterns do not have su

f

ger

FIG. 3. Turing patterns spreading forw15(a) 4.5 and~b! 5.2.
Right rectangular area (10320) is illuminated atw56; left rectan-
gular area (40320) is illuminated atw5w1 . Time intervals be-
tween snapshots areDt51 for ~a! and 5 for ~b!. In ~b!, the first
snapshot is taken att510, after the striped pattern has spre
throughout the left area. The slope of the dashed line in~a! deter-
mines the rate of a stripe pattern’s expansion,Vintr .

TABLE I. Rate Vintr of Turing pattern expansion and critica
velocity vcr un for onset of a uniform stripe propagating pattern
functions of light intensityw1 .

w1 Vintr vcr un

0 1.3 1.5
2 2.6 2.5
4 4.7 4.4

4.5 4.5 4–5
5.2 4.4~stripes!

0.8 ~spots!
4–5
9-3
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ficient time to develop in the dark region~if the width of this
region does not significantly exceedlT), and only a shadow
of the mask is seen. We will discuss the dependence of
width of the unstructured propagating stripe onvx in Sec. IV.

The most interesting motions are types~i! and ~ii !. Each
consists of several subtypes. In general, there are two di
ent types of nontranslational pattern motion; these are
sented in Tables II and III between the hatched and the b
separation lines. We call these behaviors hexagonal mo
@cases~b! and ~c! of Table II and case~c! of Table III# and
striped motion@case~d! of Table II, for example#, because of
their similarity with hexagonal-spot and striped Turing p
terns. Although individual snapshots of hexagonal motion
not exhibit hexagonal-spot patterns@see Figs. 4~b! and 4~c!#,
superposition of a sequence of snapshots with a short
interval between them reveals the hexagonal pattern. An
ample of striped motion is shown in Fig. 4~d!. For shortl m ,
the striped pattern periodically alternates between one
two stripes; for longerl m , between two and three stripes.

For somel m and w1 ( l m54.5 at w154; l m55.5 at w1

TABLE II. Typical patterns at velocityvx for a mask of widthl m

at w155.2 and 2. Note that at anyvx , only stripe patterns occur a
l m54.5 for w152 (lT55.03) and atl m55.6 for w150 (lT

55.61). ~a!–~e! are summations of long series of consecutive sn
shots with a short time interval between them; other patterns
single snapshots. Nontranslational motion for cases~a!, ~b!, and~e!
are shown in Fig. 4. Individual snapshots for cases~c! and ~d! are
analogous to those shown in Figs. 4~c! and 4~d!, respectively.

aPattern atw150 and l m52lT is analogous to that atw152 and
l m>2lT with the exception that bistability is found forvx

50 – 0.2.
blT54.05 atw155.2.
cTranslational two-stripe pattern forl m510.5 is found at vx

50 – 0.15.
dAnalogous white hexagon summation patterns are found forl m

510.5 atvx50.26– 2.
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52), we observe pure hexagonal nontranslational movem
For otherl m and w1 ( l m54.5 andl m58.46 atw154.5; l m
58.84 at w154), only striped motion is found. In a few
cases (l m58.1 andl m54.5 atw155.2; l m510.5 atw152),
both types of nontranslational motion are seen for the sa

-
re

TABLE III. Typical patterns at velocityvx for a mask of width
l m at w154 and 4.5. Only stripe patterns occur forl m52 at anyvx .
With the exception of~c!, each pattern is a single snapshot;~c! is a
summation of a long series of consecutive snapshots with a s
time interval between them. Typical behavior for cases~c! and~d! is
shown in Fig. 4. Forw154.5 (lT54.23), bistability is found for
l m54.5 atvx50 – 0.2 and atvx50.8– 1.1; and forl m58.46 atvx

50 – 0.1 and atvx50.4– 1.1. Forw154 (lT54.42), tristability is
found for vx50 – 0.1, bistability for vx50.1– 0.3, and forvx

50.6– 0.7 atl m58.84, while atl m54.5, bistability occurs forvx

50 – 0.2.

FIG. 4. Examples of nontranslational motion. Sequences
snapshots for cases~a!, ~b!, and~e! correspond to cases~a!, ~b!, and
~e! in Table II; vx50.3 for ~a! and~e! and 1 for~b!. Time intervals
between snapshots areDt512 for ~a! and ~e!, 4.25 for ~b!. In ~b!
and ~c!, only the left snapshot shows the full area; other snapsh
omit the uniform white area in the left half of the medium. S
quences of snapshots for cases~c! and ~d! correspond to cases~c!
and ~d! in Table III; ~c! vx51.2, Dt51.2; ~d! vx52, Dt51.
9-4
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TRANSLATIONAL AND NONTRANSLATIONAL MOTION . . . PHYSICAL REVIEW E 67, 066219 ~2003!
mask at differentvx . For these cases, hexagonal movem
occurs at smallervx and striped movement at largervx , al-
though forw152, bistability between striped and hexagon
motion is found in the range 1.2,vx,2. For w155.2, the
emergence of hexagonal motion at lower mask veloci
than striped motion arises from the different rates of exp
sion of stripes and spots~see Fig. 3 and last row of Table I!.
Spots propagate much more slowly than stripes, but spots
more stable atw155.2 ~Fig. 1!. When the mask moves rela
tively slowly, there is enough time for spots to develo
When the mask moves faster, there is insufficient time
spots to mature, and ‘‘unstable’’ stripes become stable,
fashion resembling the generation of a less stable produ
a chemical reaction by kinetic as opposed to thermodyna
control.

Nontranslational motion is characterized by a periodT for
a given pattern to reappear at a distancevxT beyond its origi-
nal location. The dependence ofT on vx is presented in Table
IV. We observe that the product ofT andvx is equal to 2lT
for hexagonal motion and tolT for striped motion, so long
as vx is relatively far from the critical velocity of the

TABLE IV. PeriodT of pattern recovery~hopping! for nontrans-
lational motion at velocityvx of a mask of widthl m54.5 at two
values of light intensityw1 for 2D and 1D cases. Top group,w1

55.2 (lT54.05), 2D; middle group,w154.5 (lT54.23), 2D; bot-
tom group,w155.2, 1D. vcr'0.5– 0.55 for the top 2D case.vcr

cannot be found for the middle group due to bistability betwe
vx50.8 and 1.1~see Table III!.

vx T vx3T (vx3T)/lT

1 8.2 8.2 2.02
1.2 6.7 8.04 1.98
1.3 6.3 8.19 2.02
1.45 2.8 4.06 1

2 2 4 0.99
3 1.35 4.05 1

1.3 3.25 4.23 1
1.5 2.83 4.24 1
2 2.075 4.15 0.98

2.5 1.69 4.23 1
3 1.4 4.2 0.99
4 1.05 4.2 0.99

0.155 `

0.1565 129 20.19 4.98
0.158 110 17.38 4.29
0.1595 100 15.95 3.94
0.162 70.6 11.4 2.82
0.165 58 9.87 2.36
0.17 51.3 8.72 2.15
0.18 37.6 6.76 1.67
0.2 28.6 5.70 1.41
0.3 14.8 4.44 1.1
0.5 8.15 4.07 1.01
1 4 4 0.99
2 2 4 0.99
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translational-nontranslational~T-NT! transition.
It is important to note that in nontranslational motion i

dividual stripes or spots do not move. Instead, new stripe
spots emerge at the front end of the mask and old stripe
spots fade and die at the rear end, as if the rearmost obje~s!
had hopped over or leapfrogged the rest of the pattern
reappear at the front. In translational motion~at smallervx)
in contrast, the same structure persists at all times, and t
is no associated periodT for the regeneration of a pattern, bu
rather a continuous movement of the entire pattern. For so
cases close to the T-NT transition, such as those in Tab
@cases~a! and ~e!#, we find an intermediate type of motion
which resembles the movement of an amoeba. In this mo
illustrated in Figs. 4~a! and 4~e!, patterns flow by fits and
starts into a new position by changing their shapes, e
spots become dumbbells, and vice versa.

There are two primary types of translational motion
small vx : movement of a stripe~or of parallel stripes at
largerl m) and movement of spots~or of multiple columns of
spots at largerl m). Hybrid spot-stripe patterns can also occ
~Table II: l m51, vx51.1– 1.2, w155.2; Table III: l m
58.84,w154, vx50 – 0.3). Translational motion of spots
analogous to the dash waves found in the BZ-AOT syst
@1#.

Bistability between moving stripes and moving spots o
curs over a large range ofvx for those parameters for whic
bistability is found atvx50 with respect to eitherw1 or l m .
For w154, l m58.84 ~Table III!, we even found tristability
among two-stripe (vx50 – 0.1), stripe-spot (vx50 – 0.3),
and dumbbell (vx50 – 0.7) patterns forvx50 – 0.1. The
transition from stripe-translational to spot-translational m
tion, which was found in experiment@2#, occurs at fairly
small vx ~about 0.1–0.2! in the bistability range ofw1 (w1
54 – 4.5). It is likely that this transition is related to inst
bilities of the moving front.

Qualitatively speaking, the transitions between modes
different vx are related to the transitions that occur atvx
50 as l m is varied. Single-stripe, spot, and two-stripe pa
terns succeed each other asl m grows@columns~d! and~e! of
Fig. 2#. An analogous sequence of patterns is found for
bistable region ofw1 ( l m54.5 andw154.5) whenvx in-
creases. A single column of spots at smalll m @Fig. 2~f!# or
spot-translational motion at lowvx for w155.2 ~Table II! is
replaced by a hexagonally oriented pair of spot columns
larger l m or by hexagonal motion at largervx , respectively.
Intuitively, the two behaviors parallel one another becau
the width of the perturbed zone, where the concentrationu
andv are not equal to their stationary, illuminated values
w56 in Eqs.~1! and ~2!, increases withvx .

The number of modes of behavior for moving Turing pa
terns depends strongly on the mask width. For example,
white spots and stripes (w150 – 4.5), only moving~unstruc-
tured! stripes can occur for very smalll m (,lT) at anyvx ,
while moving spots emerge whenl m>lT . As l m increases,
the number of accessible moving patterns grows. We did
examine masks of width greater than 2lT for the two-
dimensional~2D! case. It is evident, however, that at ve
large l m there will be no interaction between patterns form
ing at the front and dying at the rear edges of a mov

n
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V. K. VANAG AND I. R. EPSTEIN PHYSICAL REVIEW E67, 066219 ~2003!
mask. Thus in the central region of a very wide moving ma
we will be limited to the patterns shown in Fig. 1~a! for a
stationary mask. We may expect the greatest diversity
moving Turing patterns to occur for moving masks of inte
mediate width.

IV. TRANSLATIONAL-NONTRANSLATIONAL
TRANSITION IN ONE DIMENSION

The translational-nontranslational transition is easier
understand in the 1D case, where we can vary the m
width l m over a broad range without the need for excessiv
lengthy simulations. The problem is also simplified by elim
nating the distinctions between hexagonal and striped mo
of nontranslational motion and between stripe-translatio
and spot-translational motion.

The values of the critical velocity of the T-NT transition
vcr , obtained by direct computer simulation are presente
Fig. 5. Note that the critical velocities for the T-NT transitio
are smaller in the 1D than in the 2D case~see also Table IV!.
With narrow masks that can support only a single peak in
Turing pattern (l m /lT,1.5, curve 1!, the critical velocity
varies roughly asl m

23. For largerl m ~curve 2!, we find vcr

> l m
21.
Figure 5 also shows thel m dependence~curve 3! of the

critical velocity for the transition from nontranslational m
tion of Turing patterns to translational motion of the unstru
tured mask shadow. Only the data forl m /lT,2 are shown.
For broader masks, it is difficult to define the unstructur
band unambiguously, since the front part of the band
sembles the unstructured band seen with narrow ma
while the rear part has enough time to develop incipient T
ing structures.

The intersection of curves 1 and 3 in Fig. 5 gives the po
to the left of which only translational motion is found at an
vx . Even for this case, a transition between two differe
translational motions can be found. If we measure the wi
of the single peak@the width of theu peak at half maximum
is shown in Fig. 6~a!#, we find that at smallvx the width of a

FIG. 5. Dependence of critical mask velocity,vcr , on mask
width l m . Squares are critical velocities for the translation
→nontranslational transition. Circles~curve 3! are critical veloci-
ties for the nontranslational→translational transition. Curve 4
shows number of peaks in a Turing pattern atvx50. Curves 1 and
2 are fits of the experimental points:v50.304(l m /lT)22.9617 for
curve 1 and 0.254(l m /lT)21.05 for curve 2. Nontranslational motion
occurs between curves 3 and 1, 2.lT is the Turing wavelength,
4.053 forw155.2. All other parameters as in Fig. 1.
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peak is approximately equal to the width of a Turing pe
and is essentially independent ofvx . Above a critical veloc-
ity, the width of the peak starts to increase withvx and the
amplitude of the peak~not shown! simultaneously begins to
decrease.

The dependence ofvcr on l m indicates that processes
the edges of the mask, and consequently the boundary
ditions, must affect the T-NT transition. Figure 6~b! shows
the dependence ofvcr on w2 , the light intensity determining
the steady state values ofu andv in the homogeneous regio
beyond the mask. These values ofu andv determine the flux
boundary conditions.

The problem analyzed here of Turing pattern illuminati
through a moving one-stripe mask is equivalent to that o
quasi-two-dimensional layer of a reactive mixture at stea
state flowing across a fixed striped region, perpendicula
the direction of motion, in which one or more system para
eters takes a value that enables the system to exhibit Tu
instability. To study translational motion of patterns, one c
introduce a moving framer 5x2vxt, or, more generally, one
can assume that concentration profiles are of the fo
c(x,t)5cT(r )eivt with non-zero-flux boundary conditions a
the stripe borders. Such a substitution introduces convec
terms of the formvx(11 iv)]cT /]r . In general, solutions
will exist with v50 for vx,vcr , corresponding to stationar
patterns. Ifvx exceeds the critical velocityvcr , we havev
Þ0, and the solution corresponds to nontranslational mot

Nontranslational motion in the moving frame actua
represents waves, which usually emerge in the case of
wave instability@sometimes called the finite wavelength i
stability, and characterized by a positive real part Re(l) and
nonzero imaginary part Im(l) of the largest eigenvalue, fo
some range of wave numbersk, 0,k1,k,k2]. To demon-
strate that Turing patterns transform into traveling waves
the moving frame, we recorded the time dependence ofu for
several moving points and constructed a space-time p
Whenvx is far from the critical velocity of the T-NT transi
tion, vcr @Fig. 7~a!#, waves propagate from the front edge
the rear edge of the mask with velocity aboutvx and wave-
length aboutlT . However, if vx2vcr is small @Fig. 7~b!#,
there is no single velocity of propagation. Turing peaks
side near some special point for a relatively long period
time and then a new peak emerges as an old one rap

l

FIG. 6. ~a! Dependence of full width at half maximum of theu
peak on mask velocityvx for small l m ~translational motion!. l m

51, w155.2 for curve 1;l m52, w154 for curve 2;l m54.5, w1

52 for curve 3.~b! Dependence of critical velocity,vcr , of mask
movement on light intensity beyond the mask,w5w11w2 ; w1

55.2, l m58.1. All other parameters as in Fig. 1.
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disappears. The dependence ofT on (vx2vcr) in the vicinity
of vcr ~see Table IV, bottom part, withvx betweenvcr
50.1555 andvx50.3) is well fitted by the expressionT
5A(vx2vcr)

2g with critical exponentg50.49 close to the
theoretical value 0.5 (A515.3 for the parameters in Tabl
IV !.

For reaction-diffusion-convection equations containi
convective terms like thevx ]u/]r term introduced by our
moving frame ansatz, wave instability has been found
two-variable models @11,12#, and the wave instability
emerges at any positivevx for spatially infinite~or periodic!
systems, since Im(l)5kvx . We obtain the same result for th
present system with finite, but not too small,l m (k
5pn/ l m ,n51,2,...;l m.0.2lT) and fixed value~Dirichlet!
boundary conditions. In light of this result, it may appe
strange that translational motion~i.e., a stationary solution o
the system in the moving frame! exists at nonzero values o
vx .

To elucidate this question, first note that in the pres
case of a finite length system we have nonzero-flux bound
conditions, which strongly affect the onset of wave instab
ity in the moving frame~dependence ofvcr on l m andw2).
This wave instability also differs from the more common
encountered case in that it emerges when Im(l) becomes
nonzero at already positive Re(l), while in most reaction-
diffusion equations, the wave instability occurs when Rel)
becomes positive at nonzero Im(l). For vx,vcr , we have a
stationary Turing structure@ Im(l)50 and Re(l).0 in some
range of wave numbersk.0]. For vx.vcr , Im(l)Þ0 and
Re(l).0. Thus, to analyze the stability, we must test t
stability of a Turing pattern, rather than that of a homog
neous steady state, with respect to changes invx . This prob-
lem of nonlinear stability analysis is beyond the scope of t
paper.

We have analyzed a specific model, Eqs.~1! and ~2!, be-
cause it is directly relevant to the CDIMA reaction, on whi
all experiments of this type have been conducted to d
Nevertheless, the results obtained, in particular the existe
of the T-NT transition and the utility of thevx50 system for
providing insight into the moving system, should apply
any system of this type. Here we suggest a general qua

FIG. 7. Time-space plots in the moving frame forw155.2 and
~a! l m58.1,vx50.5, ~b! l m54.5,vx50.162 with white correspond
ing to the maximum~4.32! of u and black to the minimum~0.69!.
Vertical space axis runs~a! from r 023l m/16 to r 01 l m , ~b! from
r 023l m/10 to r 01 l m ; r 0 corresponds to rear edge of the movin
mask. Horizontal axis is time; total intervalDt5(a) 45 and~b! 300.
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tive explanation for translational motion at smallvx . We
think of a mask’s motion as consisting of independent mo
ments of its front and rear edges. Clearly, changes at
boundaries of the Turing pattern will affect the central regi
of the pattern. If we instantaneously shift the rear edge of
mask by a distance much less thanlT toward the Turing
pattern~toward the right!, the Turing maxima will sequen
tially start to shift to the right, thus decreasing the appar
wavelength of the pattern, since the front edge is fixed. If
perform the same shift only at the front edge, the appar
Turing wavelength will increase, as the concentrati
maxima move toward the right, but now with the forwar
most peaks moving the furthest. We may say that the sm
shift of the rear~front! edge pushes~pulls! the Turing peaks,
since the apparent Turing wavelengthlR of a real pattern in
a finite system with our boundary conditions is determin
by

lR5 l m /n, ~3!

wherelR is the closest value tolT52p/k0 for some integer
n. When both edges move simultaneously, we have tran
tional motion. If the displacement of the rear~front! edge is
much larger, of the order ofplT , with p'1, the leftmost~a
new! Turing peak disappears~emerges!, thus resulting in
nontranslational motion.

Let us assume that a small perturbation at the bound
propagates through a Turing pattern with some character
velocity vp or timetp5 l m /vp . Our simulations suggest tha
the critical value ofp, pcr , at which new~old! peaks begin to
appear~fade! is between 0.3 and 0.45, depending somew
on l m /lT . The critical time for mask movement is thus th
time required for the mask to travel the critical distan
pcrlT , or tcr5pcrlT /vx . Equatingtcr andtp , we obtain the
critical velocity vcr5pcrlT /tp , for the T-NT transition. In
other words, we find nontranslational or translational mot
according to whether the mask moves faster or more slow
respectively, than vp(pcrlT / l m), i.e., than a fraction
pcrlT / l m ~which decreases with the size of the mask! of the
rate at which a perturbation propagates through the Tu
pattern~this velocity is smaller than the velocity of Turin
patterns spreading into the homogeneous medium!.

Expression~3! for lR allows us to estimate the variabilit
of the apparent Turing wavelength, i.e., the effect of variab
finite size, asulT2lRu>pcrlT /n, where pcr>0.5 and n
> l m /lT , so ulT2lRu>pcrlT

2/ l m . If the T-NT transition is
associated with this variability oflR , then this estimate
gives the correct dependence ofvcr on l m .

V. DISCUSSION AND CONCLUSION

We have found several types of moving Turing patter
which may be divided into two classes: translational a
nontranslational. The T-NT transition, which depends up
the mask width and the light intensity beyond the mask
connected with the onset of a wave instability in the movi
frame. The transition from nontranslational motion to tran
lational unstructured stripe motion is related to the veloc
of pattern expansion in a uniform medium.
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Our initial motivation for this work came from das
waves in the BZ-AOT system@1#. Returning to dash wave
and taking into account that translational motion of spotl
Turing structures~the analog of dashes! occurs only at small
vx , we infer that dash waves should be associated with r
tively slow trigger waves. In fact, the velocity of trigge
waves in the BZ-AOT system~2–10mm/s! @13#, where the
dash waves appear, is considerably smaller than in the
system in aqueous solution~40–100mm/s! @14#.

We have studied the behavior of Turing patterns only
the movement of a one-stripe mask. Our results may serv
a basis for analysis of interaction between Turing patte
and moving multiple-stripe masks, occupying an entire a
Preliminary studies with multiple-stripe masks reveal th
there are at least three types of motion: translational mo
for small vx , nontranslational motion for intermediatevx ,
andoscillatorypatterns, which undergo small amplitude m
tion around their fixed positions, for largevx . The last type
of pattern arises from interactions between Turing structu
in neighboring ‘‘dark’’ stripes.

We have considered the simplest case, in which no H
instability is present. However, in the CDIMA reactio
n,

E

/
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@model ~1! ~2!#, there are many parameter sets for whi
Turing and Hopf instabilities coexist. Interaction or res
nance between the intrinsic frequency of oscillatory behav
associated with the Hopf instability and the translational f
quencyvx / l m or vx /lT may lead to additional phenomen
and patterns.

It is not difficult to envision biological systems in whic
the problem examined here may be relevant. One such
ample is the flow of blood and emergence of a clot in
sponse to a cut. A detailed model of blood coagulation yie
complex stationary spatial patterns~clots! if a capillary is
perturbed locally@15#. Turing patterns have been suggest
to play a significant role in morphogenesis@16#. Waves of
biological activity and fronts of proliferating cells may inte
act with Turing patterns, creating patterns resembling th
seen here.
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