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When the front and rear boundaries of a Turing pattern with nonzero flux boundary conditions move
synchronously, several modes of motion of the pattern are found. Traveling boundaries can be obtained
experimentally by illuminating a Turing-unstable system through a moving mask consisting of a single dark
stripe with a light intensity sufficient to suppress pattern formation. All structured moving patterns belong to
two general types: smooth translation at low mask velogjtyand nontranslationahopping”) at interme-
diatev, . At highv,, Turing patterns are unable to form, and an unstructured striped image of the mask is seen.
When the mask width exceeds the Turing wavelength, bistability between different types of moving patterns
can occur a®, is varied.
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[. INTRODUCTION trigger waves. As the mask starts to move, say, toward the
right, the left edges of a striped Turing pattern are brought
Turing patterns and motion would seem, at first glance, taunder illumination and are suppressed, while new shadow
be incompatible phenomena. However, under some condzones become available for expansion of Turing patterns to
tions, moving Turing patterns are possible. We recenththe right. The right border of each Turing stripe represents a
found [1] in the Belousov-ZhabotinskyBZ) reaction dis- kind of trigger wave front, since the system there is switched
persed in an aerosol OT water-in-oil microemulsi@z-  abruptly from one statéhe suppressed state under illumina-
AOT system the existence of dash waves, which consist oftion) to another(the excited dark stateThe left border of
parallel lines of propagating spots or dashes. We showegach Turing stripe corresponds to a trigger wave front with
experimentally and in model simulations that when the mi-the opposite switching.
croemulsion has a bimodal distribution of water nanodroplets lllumination of Turing patterns through a moving mask
with two different droplet radii(2.1 and 20 nm the BZ- has a close relation with three types of experiments that have
AOT system has two steady states, one of which exhibitéecently been performed1) illumination of Turing patterns
excitability and the other possesses a pseudo-Turing instabiibrough stationary masks of different wavelengfhg (2)
ity. The excitable state generates trigger waves that cafpatially uniform, time-periodic illumination of Turing pat-
switch the system in the area occupied by waves to th&ms[3,5]; and(3) formation of Turing structures in the pres-
pseudo-Turing unstable steady state, which can result in thence of a moving region of illuminatiof6].
trigger wave splitting into fragments or dashes separated by In this paper we study the dependence of Turing patterns
gaps. Each dash wave may be thought of as a one2n the velocity of a one-stripe moving mask in a broad range
dimensional propagating Turing structure with characteristicof mask velocities, mask widths, and light intensities. In Sec.
wavelength (gap dash) 2r/k,, wherek, is the wave num- |l we outline our model and explain our choice of parameters
ber corresponding to the pseudo-Turing instability. for the Turing patterns under investigation. In Sec. Il we
Moving spots(the analog of dash wavebave also been Present the results of our numerical simulations for a two-
obtained recently in a very different experiment involving dimensional system. In Sec. IV we analyze the transition
external perturba’[ion of Turing patterns in the Ch|orinefr0m translational to nontranslational motion for the one-
dioxide—iodine—malonic acilCDIMA) reaction[2]. Striped dimensional case. Section V contains our discussion and con-
Turing patterns were illuminated through a striped mask orilusions.
ented parallel to the pattern with the same spatial periodicity
of dark and transparent zones. Light passing through the Il. A MODEL: PRELIMINARY RESULTS FOR A
transparent regions of the mask suppresses pattern formation STATIONARY MASK
[3], so that Turing structures can survive only in the dark

zones. When the mask is slowly moved perpendicular to th engyel-Epstein moddlEgs. (1) and (2)] for the CDIMA

stripes, the Turing patterns move with the mask. At a Criticalreaction[?] augmented by an additional tenmthat charac-
mask velocity, the Turing stripes split into a linear array Ofterizes the light intensity3,4]

spots moving coherently in the same direction. Further in-

To simulate Turing patterns, we employ the well-known

crease ofv, leads to a ripple structure. This symmetry- gulgt=a—u—4up/(1+u?) —w(x,t)+Au, 1)
breaking phenomenon is not yet understood.
These two experiments have much in common and in- dvlat=ablu—uv(L+ud)+w(x,t)]+odAv. (2

spired us to investigate the relationship between Turing
structures and traveling boundari@sask motion. The latter  The variablesu andv are the dimensionless concentrations
is equivalent, in a sense, to the propagation of a pair obf [17] and[CIO, ], respectively;a,b,d (the ratio of the
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diffusion coefficients ofu andv), and o are dimensionless @ >
parameters that involve the reaction rates and input concen- 203 siseee
trations of the major chemical species. The rate of the pho- "c:,'» """ "”” ”M” :2::::
tochemical reactionv(x,t) is a function of the spatial coor- seile :;2:2:
dinatex and timet and is expressed as o 2 & & 8
gﬁiﬁihﬁ R
b) (1R
WX, D) =Wy wam, Assssessitaesiiiiis:
0 2 4 45 5
wherem=1 if x<X,, or Xx>Xpu+I, and 0, if X, ,<X<Xgn ®) SR o .
+1m; Xm=Xo—vyl, wherev, is the velocity of the moving l :
mask in thex direction, andx, is the initial x coordinate of . .
the left edge of the mask stripe of widkh . 0 4 45 5 5.7
Equations(1) and (2) were solved numerically with the
; O . (©) — 5
FLEXPDE packagd 8] with periodic boundary conditions for .
the left and right borders of a rectangular arex 30 in size .
(in some cases, with very wide stripes, we employ a 40 f
X 30 area; for one-dimensional simulations we used a seg- 0 2 4 4.5 5
ment as long as 130Zero flux boundary conditions were E . 5
used at the top and bottom of the areeexpDE refines the . : .
triangular finite element mesh until the estimated error in any o . 35 %

variable is less than a specified tolerance, which we chose as
104, at every cell of the mesh.

We choose the parametaerg andw, so that the system
(1), (2) has a stable homogeneous steady state-aiwv;

+Wp (both eigenvalues are negative at all wave _n.umkers ing w; (numbers below snapshatdn (a) and (), upper (lower)
while atw=w,, the system possesses one positive real iz oy shows direction of changing; for upper (lowen row of
genvalue in the range<OKn<k<Kpqy. The systeml), (2)  patterns(a) I,,= 30=size andv=w;, . Forw,=2 in the upper row
then has a Turing instability at=w, . For a well-chosen set of each set of patterns, an initially homogeneous steady state was
of parametersa, b, o, andd, we can obtain all types of perturbed on a narrow stripe at the left boundary. The rest of the
Turing patterngFig. 1(a)] by varyingw, [9]. upper row was generated by starting from the Turing pattern found

As Fig. 1(a) shows, white spots appear at low valueswf at one value ofv; and then increasing; to the next value shown.
stripes at intermediate, and black spots at high&. When  The lower row of patterns was generated by starting from the pat-
w>5.786, only the uniform steady state is stable. Thereforetern atw; =5 and decreasing/ in the reverse of the process de-
we usew;+w,=6 to suppress Turing patterrisince the scribed above. If the initial pattern is that obtainedngt=0, the
steady state of modél), (2) is ugs=a/5—w, we must have pattern found awv; =2 is the one in the lower rowb), (c) Intensity
w<a/5; for the parameters used heeg5=7.2]. Bistability ~ Of light w inside mask stripe isv,; w=w,+w,;=6 outside this
between stripes and black spots is found wineis between ~ Stripe.

about 3.5 and 5. The type of pattern that occurs in the dark,m to fit both the “proper” background and a set of white
zone of the mask, where=w, , depends upon both; and  gpts, so instead the system generates a black stripg at
the widthl,, of the mask. Figures(lh) and Xc) show thatthe —
bistability region vanishes wheh,<\1 [Ar is the Turing In Fig. 2 we examine how the type of Turing pattern
wavelength obtained by linear stability analysis of the syswvaries withl , at severalv,. Forw;=0 and 4(as well as for
tem (1), (2), \y=4.2-4.5 atw=4-4.5], and reappears for w,=4.5, not showj there are regions df,, where the pat-
[m=N1. tern found depends on the initial conditions. Since we ob-
Comparison of Figs. (b) and Xc) atw;=0 with the Tur-  tained bistability atw=4 and 4.5 on varyingv without a
ing patterns in Fig. (&) at w=0 reveals that the white spot mask[Fig. 1(a)], it is not surprising to find bistability with
Turing pattern disappears If, is too small. This phenom- respect td ,, for these values ofv,;. We also anticipate the
enon has a straightforward interpretation. The regions coviack of bistability with respect tb,, found atw;=2 and 5.2,
ered by the mask in Figs(l) and Xc) have special bound- since these levels of illumination do not yield bistability
ary conditions at their left and right boundarigkix to and  whenw is varied. The unexpected bistability &t =0 [col-
from the illuminated homogeneous steady statéhile the  umns(a) and (b) in Fig. 2] appears to be associated with
patterns in Fig. (8 have zero flux or periodic boundary stabilization of the stripe pattern, which emerges faster than
conditions. The special boundary conditions in Fige) and  the spot pattern, by the white background of the illuminated
1(c) correspond to a “white background,” whene=w; region. Thus, if we start with homogeneous initial conditions
+w,. White spot Turing patterns at=0 have a “black or the stripe pattern, the latter can perslgt=£8,11.2), or at
background,” and are incompatible with a “white back- least linger in the form of linked spot$.(=12.6), though if
ground.” Since the width of the dark area is less than awe start from the natural white spot pattern, it remains stable
Turing wavelength X1=5.6 atw=0), there is not enough so long ad,=\.

FIG. 1. Turing patterns in modéL), (2) illuminated through a
mask of widthl,=(a) 30, (b) 2, (c) 4.6 for a=36, b=2.8, d
=1.2, ando = 30. Size=30x 30. Arrows show directions of chang-
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- gular area (4&20) is illuminated atw=w,. Time intervals be-
. tween snapshots at=1 for (a) and 5 for(b). In (b), the first
. snapshot is taken at=10, after the striped pattern has spread
5.6 5.1 3 2.1

throughout the left area. The slope of the dashed lin@jrdeter-

. . . . mines the rate of a stripe pattern’s expansidpy .
FIG. 2. Stationary Turing patterns illuminated through a mask of pep P e

width |, (numbers below snapshatsnside mask stripe, intensity
of light w;=0 for columns(a) and(b), 2 for (c), 4 for (d) and(e),
and 5.2 for(f); w=w; +w,=6 outside this stripe. All other param-
eters as in Fig. 1. Patterns in colum(ibg and(e) are obtained from
homogeneous steady state as the initial pattern. Patterns with larger . MOVING MASK
I, were used as initial conditions for patterns in coluntasand
(d). No bistability regions are found fowv,=2 [column (c)] and
w;=5.2[column(f)].

ing peaks disappear simultaneously after a characteristic time
between 0.2 and 0.8 depending on the initial type of pattern.

We carried out simulations of moving masks at a variety
of mask velocities and lengths. Representative results of our
simulations are presented in Tables (lalues of w,; for

Understanding how the Turing patterns change wjth ~ which only one type of Turing pattern is foundnd Il (val-
will be important later in interpreting the behavior of moving uUes ofw; in a bistable region of Turing pattepmnand in Fig.
Turing patterns as a function of mask velocity. Our pre- 4. We find three general types of pattern movemét:
liminary calculations ab,=0 allow us to find representative Smooth translational movement at small velocities, where
values ofw; andl,,, which we use in our study of the Turing patterns follow the moving mask while maintaining
moving mask. We choose, =5.2 for black-spot Turing pat- their _s_tructure;(ii) nontranslat.ion_al movement at_moderate
terns,w; =4 and 4.5 for bistabilityw, =2 for striped Turing veloc!'t_|es, Where_ patterns periodically chgnge their structure;
patterns, andv,=0 for white-spot patterns. We will also and (iii) translational movement of a single unstructured
consider the effect of varyinty, (I, <\, |,=\y, andl,  Stripe at high velocities. In this last, and least interesting,
=2\7). case, the moving stripe may be wewed_ as the shadow of the

Our analysis of the behavior of a moving mask requiregN0Vving mask. These stripes are seen in the bottom rows of
knowledge of the rate of Turing pattern expansion into alaPles Il and Il below the single bold separation line. The
region wherew=w;,. To obtain these data, we performed critical velocitiesv,, atI,=2Ar, for which this uniform
computer experiments analogous to those made by Kaefifipe emerges, are given as a functionvef in the right
etal. [6] or Jensenret al. [10], but in two dimensions. A column of Table I. The striking agreement betwegp,, and
rectangular area 5020 in size is divided into two regions. Vinr Suggests that the appearance of these unstructured
The right part (16<20) is illuminated withw=6, and the Stripes is related to the rate of pattern formation in a uniform
left part (40<20) with w=w, . Turing patterns start to ap- medium. Ifv,>Viy,, then Turing patterns do not have suf-
pear at the boundary between the parts and spread to the left. _ ) .
Forw, =2, 4, and 4.5, stripes emerge one by OFig. 3a)]; TABLE I. Rate V,, of Turlng pattern expansion and critical
for w,=0, columns of white spots emerge and propagate iryeloc_lty Ver un_for onset pf a uniform stripe propagating pattern as
tandem with intervening black stripes. Fay=5.2, stripes unctions of light intensityw, .
appear first and then are transformed into black spots. In this

case[Fig. 3(b)] we calculate two rates of pattern propaga- ! Vi Gorun
tion, one for stripes and another for spots. These rates of 0 1.3 15
frontal propagationV;,, are summarized in Table I. 2 2.6 2.5

Note that in the reverse process, in which Turing patterns 4 4.7 4.4
initially occupy the entire area witlw=w, and then the light 45 45 4-5
intensity is instantaneously increasedate- 6 in most of the 5.2 4.4(stripes 4-5
area, while the smaller part remainsvatw,, no propagat- 0.8 (spots

ing front of pattern disappearance is found. Instead, all Tur
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TABLE Il. Typical patterns at velocity, for a mask of widtH ,, TABLE Ill. Typical patterns at velocity, for a mask of width
atw;=5.2 and 2. Note that at any,, only stripe patterns occur at |, atw;=4 and 4.5. Only stripe patterns occur fgr=2 at anyv, .
ln=4.5 for w;=2 (Ay=5.03) and atl,=5.6 for w;=0 (At With the exception ofc), each pattern is a single snapshaj;is a
=5.61).(a)—(e) are summations of long series of consecutive snapsummation of a long series of consecutive snapshots with a short
shots with a short time interval between them; other patterns aréme interval between them. Typical behavior for cag@and(d) is
single snapshots. Nontranslational motion for casggb), and(e) shown in Fig. 4. Fow;=4.5 (\t=4.23), bistability is found for
are shown in Fig. 4. Individual snapshots for caégsand(d) are  1,,=4.5 atv,=0-0.2 and av,=0.8—1.1; and fol,,=8.46 atv,
analogous to those shown in Figgcyand 4d), respectively. =0-0.1 and av,=0.4-1.1. Fow,;=4 (A1=4.42), tristability is

found for v,=0-0.1, bistability forv,=0.1-0.3, and forv,

=0.6-0.7 atl ,=8.84, while atl,,=4.5, bistability occurs fow,
Ux W|=5.2 Ux wl—2a =0-0.2.
0-0.5 : 0-0.17
In=45"° : [n=55° O w1 =4 Oy wi =45
1.1-1.2 0.16 - 0.22 = 0-0.1 [ 0-02
b 4
In=1 In=10.5 3 In=884 In=4.5
03-05 P 022-03 0-03 : 0-025 s
@), ln=8.1 —_— ©). In=5.5 I = 8.84 S| =846 i
0.6-13 2935 04-1 0-0.7 = 0-11 :
O In=45 || isoes ©)In=55" In=8.84 = In=4.5 s
1.45-3 I 13- 0.6-4.2 0:de=4 ‘
), Im=4.5 | In=10.5 In=28.84 In=8.46
(n=1) 13- (n=55) 12- b=t E 084
(Im=45) 4- O =45 | B | @.m=45
(In=81) 5- (In=10.5) 2.5
44- I 5- ﬂ
%Pattern atw, =0 andl =2\ is analogous to that at;=2 and ||

In=2\7 with the exception that bistability is found fov,
=0-0.2.

b\+=4.05 atw,;=5.2.

‘Translational two-stripe pattern fok,,=10.5 is found atv,
=0-0.15.

dAnalogous white hexagon summation patterns are found for
=10.5 atv,=0.26-2.

=2), we observe pure hexagonal nontranslational movement.
For otherl,, andw; (I,=4.5 andl,,=8.46 atw;=4.5; |,
=8.84 atw;=4), only striped motion is found. In a few
cases [(,=8.1 andl,,=4.5 atw;=5.2; | ,=10.5 atw;=2),

both types of nontranslational motion are seen for the same

ficient time to develop in the dark regidif the width of this @) et b (d) (e)

region does not significantly excead), and only a shadow ] .o

of the mask is seen. We will discuss the dependence of the | e by l i

width of the unstructured propagating stripewgnn Sec. IV. -1 o d ‘
The most interesting motions are typ@sand (ii). Each é(b): wooe g

consists of several subtypes. In general, there are two differ- . o: : KRR

ent types of nontranslational pattern motion; these are pre- : :: : < 3

sented in Tables Il and lll between the hatched and the bold
separation lines. We call these behaviors hexagonal motion
[cases(b) and (c) of Table Il and caséc) of Table Ill] and
striped motior{ case(d) of Table IlI, for exampl¢ because of
their similarity with hexagonal-spot and striped Turing pat-
terns. Although individual snapshots of hexagonal motion do

not exhlb!t_hexagonal-spot patterfsee Figs. €b)_ and 4c)], ._snapshots for casé¢a), (b), and(e) correspond to caséa), (b), and
;uperposmon of a sequence of snapshots with a short timey in Table II; v,=0.3 for (a) and(e) and 1 for(b). Time intervals
interval between them reveals the hexagonal pattern. An eXseteen snapshots atet =12 for (a) and (€), 4.25 for (b). In (b)
ample of striped motion is shown in Fig(d}. For shortl,,,  and(c), only the left snapshot shows the full area; other snapshots
the striped pattern periodically alternates between one angit the uniform white area in the left half of the medium. Se-
two stripes; for longet,,, between two and three stripes.  quences of snapshots for cagesand (d) correspond to casds)

For somel,, andw; (I,=4.5 atw,=4; |,,=5.5 atw, and(d) in Table lll; (c) v,=1.2,At=1.2; (d) v,=2, At=1.

ol

IEE R

FIG. 4. Examples of nontranslational motion. Sequences of
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TABLE IV. Period T of pattern recoveryhopping for nontrans-  translational-nontranslation&l-NT) transition.

lational motion at velocity, of a mask of widthl,=4.5 at two It is important to note that in nontranslational motion in-
values of light intensityw, for 2D and 1D cases. Top groupi;  dividual stripes or spots do not move. Instead, new stripes or
=5.2 (\y=4.05), 2D; middle groupy,=4.5 (\r=4.23), 2D; bot-  spots emerge at the front end of the mask and old stripes or
tom groupw; =5.2, 1D. v~0.5-0.55 for the top 2D caseve,  gpots fade and die at the rear end, as if the rearmost @)ject
cannot be found for the middle group due to bistability between, 5 hopped over or leapfrogged the rest of the pattern to
vx=0.8 and 1.X(see Table Il. reappear at the front. In translational moti@i smallerv,)

in contrast, the same structure persists at all times, and there

Ux T 0xXT (WX T)/Ar is no associated periobfor the regeneration of a pattern, but
1 8.2 8.2 2.02 rather a continuous movement of the entire pattern. For some
1.2 6.7 8.04 1.98 cases close to the T-NT transition, such as those in Table II
1.3 6.3 8.19 202 [cases@ and(e)], we find an intermediate type of motion,
1.45 28 4.06 1 which resembles the movement of an amoeba. In this mode,
2 2 4 0.99 illustrated in Figs. %) and 4e), patterns flow by fits and
3 1.35 4.05 1 starts into a new position by changing their shapes, e.g.,
spots become dumbbells, and vice versa.
1.3 3.25 4.23 1 There are two primary types of translational motion at
15 2.83 4.24 1 small v,: movement of a stripéor of parallel stripes at
2 2.075 4.15 0.98 largerl,,) and movement of spot®r of multiple columns of
2.5 1.69 4.23 1 spots at largek,,,). Hybrid spot-stripe patterns can also occur
3 1.4 4.2 0.99 (Table 1I: 1,=1, v,=1.1-1.2, w;=5.2; Table III: I,
4 1.05 4.2 0.99 =8.84,w,=4,v,=0-0.3). Translational motion of spots is
analogous to the dash waves found in the BZ-AOT system
0.155 0 [1].
0.1565 129 20.19 4.98 Bistability between moving stripes and moving spots oc-
0.158 110 17.38 4.29 curs over a large range of, for those parameters for which
0.1595 100 15.95 3.94 bistability is found at,=0 with respect to eithew; or | ,.
0.162 70.6 114 2.82 For w,=4, | ,=8.84 (Table Ill), we even found tristability
0.165 58 9.87 2.36 among two-stripe ®,=0-0.1), stripe-spot (,=0-0.3),
0.17 51.3 8.72 2.15 and dumbbell ¢,=0-0.7) patterns forv,=0-0.1. The
0.18 37.6 6.76 1.67 transition from stripe-translational to spot-translational mo-
0.2 28.6 5.70 1.41 tion, which was found in experimeri2], occurs at fairly
0.3 14.8 4.44 1.1 smallv, (about 0.1-0.R2in the bistability range ofv; (w;
0.5 8.15 4.07 1.01 =4-45). It is likely that this transition is related to insta-
1 4 4 0.99 bilities of the moving front.
2 2 4 0.99 Qualitatively speaking, the transitions between modes at

different v, are related to the transitions that occuruvgt
=0 asl,, is varied. Single-stripe, spot, and two-stripe pat-
mask at differenv, . For these cases, hexagonal movementerns succeed each otherlasgrows[columns(d) and(e) of
occurs at smallev, and striped movement at largeg, al-  Fig. 2]. An analogous sequence of patterns is found for the
though forw, =2, bistability between striped and hexagonal bistable region ofw; (I,,=4.5 andw;=4.5) whenv, in-
motion is found in the range 1s2v,<2. Forw;=5.2, the creases. A single column of spots at smgll[Fig. 2(f)] or
emergence of hexagonal motion at lower mask velocitiespot-translational motion at low, for w;=5.2 (Table II) is
than striped motion arises from the different rates of expanreplaced by a hexagonally oriented pair of spot columns at
sion of stripes and spotsee Fig. 3 and last row of Tablg | largerl,, or by hexagonal motion at larger,, respectively.
Spots propagate much more slowly than stripes, but spots atetuitively, the two behaviors parallel one another because
more stable atv;=5.2 (Fig. 1). When the mask moves rela- the width of the perturbed zone, where the concentrations
tively slowly, there is enough time for spots to develop.andv are not equal to their stationary, illuminated values at
When the mask moves faster, there is insufficient time fow=6 in Egs.(1) and(2), increases withy, .
spots to mature, and “unstable” stripes become stable, in a The number of modes of behavior for moving Turing pat-
fashion resembling the generation of a less stable product iterns depends strongly on the mask width. For example, for
a chemical reaction by kinetic as opposed to thermodynamig/hite spots and stripesyg =0—4.5), only movingunstruc-
control. tured stripes can occur for very smdl}, (<\t) at anyv,,
Nontranslational motion is characterized by a pefiddr ~ while moving spots emerge whép=\1. As |, increases,
a given pattern to reappear at a distang€ beyond its origi-  the number of accessible moving patterns grows. We did not
nal location. The dependenceDbnuv, is presented in Table examine masks of width greater than\2 for the two-
IV. We observe that the product dfandv, is equal to 2+  dimensional(2D) case. It is evident, however, that at very
for hexagonal motion and tuy for striped motion, so long largel,, there will be no interaction between patterns form-
as vy is relatively far from the critical velocity of the ing at the front and dying at the rear edges of a moving
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FIG. 6. (a) Dependence of full width at half maximum of the
FIG. 5. Dependence of critical mask velocity,,, on mask peak on mask velocity, for smalll, (translational motioh |,
width |,,. Squares are critical velocities for the translational =1, w;=5.2 for curve 1;l,=2, w;=4 for curve 2;|,,=4.5, w;

— nontranslational transition. Circlgsurve 3 are critical veloci- =2 for curve 3.(b) Dependence of critical velocity,,, of mask
ties for the nontranslationaltranslational transition. Curve 4 movement on light intensity beyond the masks=w;+w,; w;
shows number of peaks in a Turing pattervat0. Curves 1 and =5.2,1,=8.1. All other parameters as in Fig. 1.

2 are fits of the experimental pointsy =0.304(,,/\1) ~ 2% for ' . ' .
curve 1 and 0.254(,/\1) ~%for curve 2. Nontranslational motion Peak is approximately equal to the width of a Turing peak

occurs between curves 3 and 1, A is the Turing wavelength, and is essentially independentwf. Above a critical veloc-

4.053 forw,;=5.2. All other parameters as in Fig. 1. ity, the width of the peak starts to increase withand the
amplitude of the peaknot shown simultaneously begins to

mask. Thus in the central region of a very wide moving maskdecrease.

we will be limited to the patterns shown in Fig(al for a The dependence af, on |, indicates that processes at

stationary mask. We may expect the greatest diversity ofhe edges of the mask, and consequently the boundary con-

moving Turing patterns to occur for moving masks of inter-ditions, must affect the T-NT transition. Figuré¢b® shows

mediate width. the dependence af;, onw,, the light intensity determining
the steady state values waindv in the homogeneous region
IV. TRANSLATIONAL-NONTRANSLATIONAL beyond the mask. These valuesuadindv determine the flux
TRANSITION IN ONE DIMENSION boundary conditions.

The problem analyzed here of Turing pattern illumination
The translational-nontranslational transition is easier tGhrough a moving one-stripe mask is equivalent to that of a
understand in the 1D case, where we can vary the masfuasi-two-dimensional layer of a reactive mixture at steady
width |, over a broad range without the need for excessivelystate flowing across a fixed striped region, perpendicular to
lengthy simulations. The problem is also simplified by elimi- the direction of motion, in which one or more system param-
nating the distinctions between hexagonal and striped modesers takes a value that enables the system to exhibit Turing
of nontranslational motion and between stripe-translationainstability. To study translational motion of patterns, one can
and spot-translational motion. introduce a moving frame=x—uv,t, or, more generally, one
The values of the critical velocity of the T-NT transition, can assume that concentration profiles are of the form
v¢r, Obtained by direct computer simulation are presented ig(x,t) = c(r)e'“! with non-zero-flux boundary conditions at
Fig. 5. Note that the critical velocities for the T-NT transition the stripe borders. Such a substitution introduces convective
are smaller in the 1D than in the 2D césee also Table IV terms of the formv,(1+iw)dcr/ar. In general, solutions
With narrow masks that can support only a single peak in theuill exist with w=0 for v,<uv, corresponding to stationary
Turing pattern (,/Ar<<1.5, curve }, the critical velocity patterns. Ifv, exceeds the critical velocity,,, we havew
varies roughly ag,%. For largerl, (curve 2, we findv,, 0, and the solution corresponds to nontranslational motion.
zl;ﬁ. Nontranslational motion in the moving frame actually
Figure 5 also shows thk,, dependencécurve 3 of the  represents waves, which usually emerge in the case of the
critical velocity for the transition from nontranslational mo- wave instability[sometimes called the finite wavelength in-
tion of Turing patterns to translational motion of the unstruc-stability, and characterized by a positive real partNpend
tured mask shadow. Only the data fgy/At<<2 are shown. nonzero imaginary part Imj of the largest eigenvalue, for
For broader masks, it is difficult to define the unstructuredsome range of wave numbeks0<k;<k<k,]. To demon-
band unambiguously, since the front part of the band restrate that Turing patterns transform into traveling waves in
sembles the unstructured band seen with narrow maskghe moving frame, we recorded the time dependenaefof
while the rear part has enough time to develop incipient Turseveral moving points and constructed a space-time plot.
ing structures. Whenv, is far from the critical velocity of the T-NT transi-
The intersection of curves 1 and 3 in Fig. 5 gives the pointion, v, [Fig. 7(a)], waves propagate from the front edge to
to the left of which only translational motion is found at any the rear edge of the mask with velocity aboytand wave-
vx. Even for this case, a transition between two differentlength about\;. However, ifv,—v, is small[Fig. 7(b)],
translational motions can be found. If we measure the widthhere is no single velocity of propagation. Turing peaks re-
of the single peakthe width of theu peak at half maximum side near some special point for a relatively long period of
is shown in Fig. 6], we find that at smal, the width of a  time and then a new peak emerges as an old one rapidly
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! tive explanation for translational motion at smal}. We

() think of a mask’s motion as consisting of independent move-
ments of its front and rear edges. Clearly, changes at the
boundaries of the Turing pattern will affect the central region
of the pattern. If we instantaneously shift the rear edge of the
mask by a distance much less thapn toward the Turing
pattern(toward the righk, the Turing maxima will sequen-
tially start to shift to the right, thus decreasing the apparent
wavelength of the pattern, since the front edge is fixed. If we
perform the same shift only at the front edge, the apparent
Turing wavelength will increase, as the concentration

FIG. 7. Time-space plots in the moving frame fef=5.2 and maxima move toward the right, but now with the forward-

(@ 1,=8.1,v4,=0.5,(b) I ,=4.5,v,=0.162 with white correspond- most peaks moving the furthest. We may say that the small
ing to the maximum(4. 32) of u and black to the minimunt0.69.  shift of the rear(front) edge pusheulls) the Turing peaks,
Vertical space axis run&) from ro—31,/16 toro+1y,, (b) from  since the apparent Turing wavelength of a real pattern in

ro—3ln/10 torg+1y; ro corresponds to rear edge of the moving g finite system with our boundary conditions is determined
mask. Horizontal axis is time; total intervak= (a) 45 andb) 300. by

disappears. The dependencelain (vy—uv,,) in the vicinity Ar=Im/n, 3
of v, (see Table IV, bottom part, withv, betweenuv,,
=0.1555 andv,=0.3) is well fitted by the expressioll  where\y is the closest value th+=2m/k, for some integer
=A(vy—v¢) 7 with critical exponenty=0.49 close to the n. When both edges move simultaneously, we have transla-
theoretical value 0.5A=15.3 for the parameters in Table tional motion. If the displacement of the redront) edge is
V). much larger, of the order @i\, with p~1, the leftmosta
For reaction-diffusion-convection equations containingnew) Turing peak disappearéemergey thus resulting in
convective terms like the, du/dr term introduced by our nontranslational motion.
moving frame ansatz, wave instability has been found in Let us assume that a small perturbation at the boundary
two-variable models[11,12, and the wave instability propagates through a Turing pattern with some characteristic
emerges at any positivg, for spatially infinite(or periodig  velocity v, or time 7,=1,/v,. Our simulations suggest that
systems, since Imj=kv,. We obtain the same result for the the critical value ofp, p.,, at which new(old) peaks begin to
present system with finite, but not too small, (k appear(fade is between 0.3 and 0.45, depending somewhat
=an/l,,n=1,2,...1,>0.2\7) and fixed value(Dirichlet) onl,/At. The critical time for mask movement is thus the
boundary conditions. In light of this result, it may appeartime required for the mask to travel the critical distance
strange that translational motigre., a stationary solution of pc\t, or 7o,=peAt/vy. Equatingr,, and7,, we obtain the
the system in the moving framexists at nonzero values of critical velocity v=pcAt/7,, for the T-NT transition. In
Uy- other words, we find nontranslational or translational motion
To elucidate this question, first note that in the presenticcording to whether the mask moves faster or more slowly,
case of a finite length system we have nonzero-flux boundarespectively, thanvy(pc\t/ly), i.e., than a fraction
conditions, which strongly affect the onset of wave instabil-p A1 /I, (which decreases with the size of the maskthe
ity in the moving frame(dependence of., onl,, andw,).  rate at which a perturbation propagates through the Turing
This wave instability also differs from the more commonly pattern(this velocity is smaller than the velocity of Turing
encountered case in that it emerges when\)nmifecomes patterns spreading into the homogeneous megium
nonzero at already positive Rg( while in most reaction- Expression(3) for A allows us to estimate the variability
diffusion equations, the wave instability occurs when)®e( of the apparent Turing wavelength, i.e., the effect of variable,
becomes positive at nonzero )( Forv,<v., we have a finite size, as|\t—\g|=pAt/n, where p,=0.5 andn
stationary Turing structurBm(A\)=0 and ReX)>0 in some  =I,/ 1, SO |\t—Ag|=peAZ/ly. If the T-NT transition is
range of wave number>0]. Forv,>v, IM(\)#0 and  associated with this variability ofg, then this estimate
Re(\)>0. Thus, to analyze the stability, we must test thegives the correct dependencewf onl,,
stability of a Turing pattern, rather than that of a homoge-

neous stea_dy state, v_vith respect to changes inThis prob- _ V. DISCUSSION AND CONCLUSION
lem of nonlinear stability analysis is beyond the scope of this
paper. We have found several types of moving Turing patterns,

We have analyzed a specific model, E(l9.and(2), be-  which may be divided into two classes: translational and
cause it is directly relevant to the CDIMA reaction, on which nontranslational. The T-NT transition, which depends upon
all experiments of this type have been conducted to dateghe mask width and the light intensity beyond the mask, is
Nevertheless, the results obtained, in particular the existenamnnected with the onset of a wave instability in the moving
of the T-NT transition and the utility of the,=0 system for  frame. The transition from nontranslational motion to trans-
providing insight into the moving system, should apply tolational unstructured stripe motion is related to the velocity
any system of this type. Here we suggest a general qualitaf pattern expansion in a uniform medium.
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Our initial motivation for this work came from dash [model (1) (2)], there are many parameter sets for which
waves in the BZ-AOT systenil]. Returning to dash waves Turing and Hopf instabilities coexist. Interaction or reso-
and taking into account that translational motion of spotlikenance between the intrinsic frequency of oscillatory behavior
Turing structuresthe analog of dashgsccurs only at small associated with the Hopf instability and the translational fre-
vy, We infer that dash waves should be associated with releguencyv, /I, or v,/A+ may lead to additional phenomena
tively slow trigger waves. In fact, the velocity of trigger and patterns.

waves in the BZ-AOT systenf2—10 um/s) [13], where the It is not difficult to envision biological systems in which
dash waves appear, is considerably smaller than in the Bihe problem examined here may be relevant. One such ex-
system in aqueous solutiqgd0—100um/s) [14]. ample is the flow of blood and emergence of a clot in re-

We have studied the behavior of Turing patterns only forsponse to a cut. A detailed model of blood coagulation yields
the movement of a one-stripe mask. Our results may serve ammplex stationary spatial patterslots) if a capillary is
a basis for analysis of interaction between Turing patternperturbed locally{15]. Turing patterns have been suggested
and moving multiple-stripe masks, occupying an entire areao play a significant role in morphogenesiss]. Waves of
Preliminary studies with multiple-stripe masks reveal thatbiological activity and fronts of proliferating cells may inter-
there are at least three types of motion: translational motiomact with Turing patterns, creating patterns resembling those
for small v,, nontranslational motion for intermediatg , seen here.
andoscillatory patterns, which undergo small amplitude mo-
tion around their fixed positions, for largg . The last type
of pattern arises from interactions between Turing structures
in neighboring “dark” stripes. This work was supported by the Chemistry Division of
We have considered the simplest case, in which no Hopthe National Science Foundation. We thank Milos Dolnik for
instability is present. However, in the CDIMA reaction a critical reading of the manuscript.
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